Skip to content Skip to navigation


Dunnmon JA, Yi D, Langlotz CP, Ré C, Rubin DL, Lungren MP. Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Radiology. 2019 Feb;290(2):537-544. J Vasc Interv Radiol. 2018 Nov;29(11):1527-1534.e1.

Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, Halabi S, Zucker E, Fanton G, Amanatullah DF, Beaulieu CF, Riley GM, Stewart RJ, Blankenberg FG, Larson DB, Jones RH, Langlotz CP, Ng AY, Lungren MP. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018 Nov 27;15(11):e1002699.

Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Banerjee I, Ling Y, Chen MC, Hasan SA, Langlotz CP, Moradzadeh N, Chapman B, Amrhein T, Mong D, Rubin DL, Farri O, Lungren MP. Artif Intell Med. 2018 Nov 23. pii: S0933-3657(17)30625-5.

Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, Patel BN, Yeom KW, Shpanskaya K, Blankenberg FG, Seekins J, Amrhein TJ, Mong DA, Halabi SS, Zucker EJ, Ng AY, Lungren MP. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018 Nov 20;15(11):e1002686.

Banerjee I, Gensheimer MF, Wood DJ, Henry S, Aggarwal S, Chang DT, Rubin DL. Probabilistic prognostic estimates of survival in metastatic cancer patients (PPES-Met) utilizing free-text clinical narratives. Sci Rep 2018 Jul 3;8(1):10037.

Rajpurkar P, Irvin J,  Zhu K, Ball R, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY. MURA Dataset: Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs  arXiv:1712.06957

Banerjee I, Chen MC, Lungren MP, Rubin DL Radiology Report Annotation using Intelligent Word Embeddings: Applied to Multi-institutional Chest CT Cohort. Journal of Biomedical Informatics.

Zhou M, Leung A, Echegaray S, Gentles A, Shrager JB, Jensen KC, Berry GJ, Plevritis SK, Rubin DL, Napel S, Gevaert O. Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology. 2018 Jan;286(1):307-315.

Rajpurkar P, Irvin J,  Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY.  CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning  arXiv:1711.05225v1

Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman B, Larson DB, Langlotz CP, Amrhein TJ, Lungren MP. Deep learning to Classify Radiology Free Text Reports. Radiology .2017 Nov 13:171115.

Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2017 Nov 2:170236.

Do BH Langlotz C Beaulieu CF. Bone Tumor Diagnosis Using a Naïve Bayesian Model of Demographic and Radiographic Features. J Digit Imaging2017 Oct;30(5):640-647

Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med Image Anal. 2017 Aug;40:172-183.

Wang S, Zhou M, Gevaert O, Tang Z, Dong D, Liu Z, Tian J.  A multi-view deep convolutional neural networks for lung nodule segmentation.  Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:1752-1755.

Hassanpour S, Bay G, Langlotz CP. Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing. J Digit Imaging. 2017 Jun;30(3):314-322.

Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. AJR Am J Roentgenol. 2017 Apr;208(4):750-753.

de Sisternes L Jonna G, Moss J, Marmor MF, Leng T, Rubin DL.  Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomed Opt Express. 2017 Feb 28;8(3):1926-1949.

Echegaray S, Nair V, Kadoch M, Leung A, Rubin D, Gevaert O, Napel S. A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer. Tomography. 2016 Dec;2(4):283-294.

Hassanpour, S., Langlotz, C. P. Information extraction from multi-institutional radiology reports. Artif Intell Med 2016 Jan;66:29-39